Page last updated: 2024-11-13

1-(3,5-dimethyl-4-isoxazolyl)-3-[(2R,3R)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-2-(methylaminomethyl)-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-9-yl]urea

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

The compound you described, **1-(3,5-dimethyl-4-isoxazolyl)-3-[(2R,3R)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-2-(methylaminomethyl)-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-9-yl]urea**, is a complex molecule with a specific structure and stereochemistry. Its importance in research lies within its potential as a **therapeutic agent**.

While I don't have access to specific research on this exact compound, its structure suggests it could be a **potent and selective antagonist of the GluN2B subunit of the NMDA receptor**. This receptor plays a critical role in learning, memory, and synaptic plasticity in the brain.

Here's why this compound is of interest in research:

* **GluN2B Antagonism:** NMDA receptors are important for neuronal communication, but their overactivation can contribute to neurological disorders like stroke, epilepsy, and neurodegenerative diseases. Selective GluN2B antagonists like this compound could be used to modulate NMDA receptor activity and potentially treat these conditions.
* **Therapeutic Potential:** By selectively targeting GluN2B, this compound may offer a more specific and targeted approach to treating neurological disorders compared to broader-acting NMDA receptor antagonists. This could lead to fewer side effects and improved efficacy.
* **Structure-Activity Relationship:** The complex structure of this compound, including its stereochemistry, is likely crucial for its biological activity. Understanding how the structure affects its interactions with the GluN2B receptor could be valuable for designing even more potent and specific therapeutic agents.

**To gain a more complete understanding of this compound's significance, it would be necessary to consult specific scientific publications or databases that focus on drug discovery and neurological research.** You can search for this compound's name or its chemical structure on databases like PubMed, Web of Science, or SciFinder.

Remember, this information is based on general knowledge and structure-activity relationships. It's essential to consult primary scientific literature for specific details about the research on this particular compound.

Cross-References

ID SourceID
PubMed CID44202950
CHEMBL ID1723770
CHEBI ID124543

Synonyms (8)

Synonym
BRD-K62193937-001-01-9
CHEBI:124543
MLS002474300
smr001398461
HMS2217C16
CHEMBL1723770
1-(3,5-dimethyl-4-isoxazolyl)-3-[(2r,3r)-5-[(2r)-1-hydroxypropan-2-yl]-3-methyl-2-(methylaminomethyl)-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-9-yl]urea
Q27214767
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Drug Classes (1)

ClassDescription
aromatic etherAny ether in which the oxygen is attached to at least one aryl substituent.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (4)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
ATAD5 protein, partialHomo sapiens (human)Potency20.58780.004110.890331.5287AID504467
importin subunit beta-1 isoform 1Homo sapiens (human)Potency112.20205.804836.130665.1308AID540263
snurportin-1Homo sapiens (human)Potency112.20205.804836.130665.1308AID540263
peptidyl-prolyl cis-trans isomerase NIMA-interacting 1Homo sapiens (human)Potency39.81070.425612.059128.1838AID504891
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Bioassays (13)

Assay IDTitleYearJournalArticle
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID504812Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID504810Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (5)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (20.00)29.6817
2010's3 (60.00)24.3611
2020's1 (20.00)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 12.56

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index12.56 (24.57)
Research Supply Index1.79 (2.92)
Research Growth Index4.36 (4.65)
Search Engine Demand Index0.00 (26.88)
Search Engine Supply Index0.00 (0.95)

This Compound (12.56)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews0 (0.00%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other5 (100.00%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]